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We use combinatorics to examine the notorious
ubiquity of unmatched — “odd”” — socks. Using a
random-loss  model we show that (a) the
disappearance of socks is indeed heavily biased
towards the accumulation of odd socks; (b) random
loss of just half the socks typically cuts the number
of complete pairs left by 75 per cent; (c) the problem
of finding matching pairs remains formidable, even
after removal of all the odd socks. We suggest a
remedy based on two varieties of socks.

INTRODUCTION

Murphy’s Law — “If something can go wrong, it will” — is
popularly held to underpin many unhappy phenomena, from
being caught in the rain without an umbrella to tumbling
toast landing butter-side down. Orthodox scientific opinion,
however, seems to be that Murphy’s Law is merely an urban
myth based on selective recall of unfavourable outcomes of
events which can go either way.

So sceptical an attitude has become somewhat harder to
maintain following a recent analysis of the tumbling toast
phenomenon.' This showed that toast sliding off a table or
plate is indeed more likely to land butter-side down under a
wide range of realistic conditions. Furthermore, it emerged
that the origins of the phenomenon can ultimately be traced
to the values of fundamental physical constants set shortly
after the Big Bang. As well as confirming popular opinion,
this result highlights the dangers of dismissing widely-
reported phenomena as imaginary, nonsensical or trivial.
Uncovering the truth can require detailed experimental and
theoretical analysis.

In what follows we analyse another widely-experienced
manifestation of Murphy’s Law: the proliferation of odd socks
in drawers. Again, we find that popular experience is
confirmed, and that the explanation has surprising depth.

THE COMBINATORICS OF ODD SOCKS

At first glance, the notion that “If odd socks can be created,
they will be” may seem ludicrous. However, a moment's
reflection reveals its plausibility. Imagine a drawer containing
only complete pairs of socks (as in most of the rest of this
paper, we assume each pair is distinct). If one sock goes
missing, it creates an odd sock in the drawer. When the next
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sock goes missing, it could either be the one odd sock just
created, or a sock from a still-complete pair. As the latter
typically outnumber the former, it is clearly more likely that
another complete pair will be broken up, leading to the
creation of yet another odd sock. We can thus see
glimmerings of evidence that Murphy’s Law really does affect
sock drawers.

It is worth noting that this plausibility argument is
independent of any detailed knowledge of how or where the
socks are lost. They may go missing after being taken off, on
the way to or from the laundry, or be stolen by the family
cat. Such details are irrelevant: the only assumption we need
make for the analysis to proceed is that the loss process is
random, with every sock as likely to go missing as any other.

The analysis is made conceptually easier (and more fun)
by assuming that socks are taken from the drawer by
mythical gremlins, of whom we are the victims. Suppose
that there are initially n complete, distinct pairs of socks in a
drawer, and that the gremlins take 2s individual socks from
the drawer at random. Then the probability that the
gremlins can make exactly k complete pairs of socks from
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Qur first demonstration of Murphy’s Law of Odd Socks
follows immediately from (2): when gremlins take socks, they
are always more likely to leave us with odd socks than
complete pairs. To see this, we first note that if 2s socks are
taken, up to a maximum of n, the probability of the gremlins
ending up with no complete pairs — and thus leaving us with
2s odd socks — is
n! (2n — 2s)! 2%
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To give a specific example, consider a drawer containing
10 complete, distinct pairs of socks. If six socks go missing
from this drawer at random, then the probability that we get
the worst possible outcome, ie that every lost sock breaks up
a complete pair, is Pr‘ob(0,3, 10), which is around 1 in 3.
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This may not seem too bad until one compares it to the
probability of getting the best possible outcome, ie of all the
socks disappearing as complete pairs, thus leaving us free of
any odd socks. From (2) we find:

n! (2s)! (2n — 2s)!
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In our example of losing 6 socks from a drawer of 10
complete pairs, we find that the probability of getting this
best-possible outcome is, by (4), a dismal 1 in 323 — over
100 times lower than the chance of getting the worst-possible
outcome. We can capture this depressing effect of the
gremlins’ activity by defining a “Murphy Ratio” M(s, n) as
the ratio of unhappy to happy outcome probabilities. Then
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The larger this ratio, the more powerful the influence of
Murphy’s Law on the disappearance of the socks. Even at its
least “unhappy” value, corresponding to s =n/2, this ratio is
still greater than unity:
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Thus if half of the 10 original pairs of socks are lost, it is still
4 times more likely that the result will be a drawer-full of odd
socks, rather than a drawer-full of complete pairs.

MOST LIKELY OUTCOMES

Of course, these results do not imply that a drawer full of odd
socks is the most likely outcome of a gremlin raid; only that
it is substantially more likely than a drawer full of complete
pairs. To find the most likely effect of gremlin action, we
require an estimate of the most probable number of complete
pairs left behind after they have randomly extracted 2s socks.
Let d denote the number of complete pairs left in our drawer.
If the gremlins succeed in making k complete pairs out of the
2s they removed, then

d=n—-2s+k (7
Inserting this into (2) we find
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We can calculate the most likely value of d, the so-called
“maximum likelihood estimate” {(d), by seeking the value of
d at which the probability (8) peaks. In other words, we are
looking for the value of d at which (8) reaches a
turning-point such that Prob(d, s, n) =Prob(d —1,s, n);
Using (8) for these two probabilities and solving for d:

(dn,s))=(n—2s) + INT[(2s + 1)(s + 1)/(2n + 3)] (9)

where INT denotes integer part. This formula provides
powerful evidence of the keenness of gremlins to create odd
socks. In our example of a drawer of 10 complete pairs, the
most likely result of removing just 6 socks at random — less
than a third of the total —is a halving of the number of
complete pairs. The powerful ability of the gremlins to create
odd socks becomes still clearer if we allow them to take half

the socks at random. Then (9) reduces to
(d(n,s=n[2)y=INT[(n + 1)(n + 2)/(4n +6)]

a function which is well-approximated by INT[n/4]. Thus, if
half the socks in a drawer are lost, the most likely outcome is
for there to be just INT[n/4] complete pairs left, with all the
other (n—2-INT[n/4]) socks being odd. For example,
losing half the socks from a drawer originally containing 10
complete pairs will most likely leave behind just 2 complete
pairs, lost among 6 odd socks. No wonder complete pairs are
so difficult to find in the morning.

(10)

FINDING COMPLETE PAIRS OF SOCKS

If this were not bad enough, Murphy’s Law of Odd Socks also
hinders our attempts to extract whatever complete pairs do
exist in the drawer — even if we have thrown out all the
odd socks. To see this, we form the maximum likelihood
value for the number of complete pairs (k(n,s)), formed by
extracting 2s socks from n jumbled complete pairs by
substituting (7) into (9). This leads to

(k(n, s)y=INT[(2s + 1)(s + 1)/(2n + 3)]

By setting 2s = 2, this equation confirms that for all n=2,
drawing two socks at random even from a drawer-full of
complete pairs is most likely to produce just two odd socks.
No surprises there — most people know that their chances of
getting a complete pair from the first two socks they pull
from the drawer are pretty low. Rather more striking,
however, is the minimum percentage of socks, fm, we have
to extract to stand a reasonable chance of getting just one
matching pair. This follows from setting (k(n,s)) to 1,
solving for s and dividing by n:

V(25 + 16n) =3
4n

(11)

fmin(n) = (12)

which ranges from f,(4 pairs) =40% to f,,(10 pairs) =
27%. Thus even if we have cleared out all the odd socks from




our drawer (or if the gremlins have generously left us with all
complete pairs) we are still likely to have to rummage
through a substantial fraction of the remaining socks before
getting just one matching pair.

BEATING MURPHY’S LAW

What practical lessons can we draw from all this? Firstly,
(12) shows that those who ruthlessly eliminate odd socks but
don’t bother to keep the remaining pairs together should not
be surprised if finding a matching pair is still a chore. In
general, the number of socks one must extract to stand a
reasonable chance of forming one complete pair from a
drawer containing no odd socks is

N =~ INT[2Vn] - 1 (13)

this is, about 5 socks in the case of a drawer containing
n = 10 complete pairs.

Attempts to beat Murphy’s Law of Odd Socks usually take
the form of practical measures for keeping pairs of socks
together, such as putting them into pillow-cases before they
go into the washing machine. Ideally, of course, we would
like to beat the Law without having to go to such pains. The
simplest solution is to replace all our distinct pairs of socks
with identical ones. Happily, however, combinatoric analysis
shows this dreary solution to the gremlin problem is
unnecessarily draconian: we can allow ourselves a little
variety. Specifically, adopting a strategy based on two types
of socks produces substantial gains in convenience over
having all different types. Losing half the socks at random
typically cuts the numbers of both types by half, and thus the
number of possible pairs by three-quarters, as before.
However, these remaining socks are not lost among a myriad
of odd socks, and in general equal numbers of both types of
sock will go missing. As a result, one can usually guarantee
ending up with a complete pair from any size of two-variety
sock collection after drawing out just 3 socks.

More surprisingly, the probability of getting a matching
pair after drawing out just two socks at random is also quite
high if we restrict ourselves to equal numbers of two
varieties. It is easily shown that the probability of getting
one complete pair after drawing out just two socks from a
collection of n socks of each type is

(n—=1)

=D (14)

Prob(1 pair); yype, =
(The probability of getting a matching pair of a specific type
of sock is, of course, half this). In contrast, the probability of
doing so well after extracting two socks from a collection of n
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pairs of socks, all of which are distinct, is

1

(2n—1) (15)

Prob(1 pair), ypes =
This is typically much lower than (14): in the case of n =10
pairs, for example, (14) shows there is about a 1 in 2 chance
of drawing a matching pair out with the first two socks; the
chances of success with all-different varieties are, by (15), 9
times lower. Furthermore, the probability of success with the
two-variety remedy asymptotically approaches 1/2 for all
large n, while the probability of success with all-different
varieties falls monotonically to zero as the number of pairs
increases. This highlights another advantage of the
two-variety approach: one can cheerfully buy as many extra
pairs as one likes (as long as they are equally divided between
the two varieties), and still have the same chance of quickly
finding a matched pair in the morning. With all-distinct
pairs, in contrast, buying more just makes things worse,
reducing the chances of quick success to zero.

CONCLUSION

Using a very general random-loss model we have shown that
gremlins have a penchant for odd socks that is not easily
denied, and the result is another manifestation of Murphy’s
Law: “If odd socks can be created, they will be”.

Defeating this law is usually thought to demand either
tiresome precautions to keep socks together, or the draconian
measure of adopting just one type of sock. We have shown,
however, that combinatoric arguments lead to a neater
solution that requires neither vigilance nor dreary uniformity:
get rid of all your existing socks, choose two favourite
designs — and stick to them.
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