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Summary
Using probability theory, I show that the “urban
myth” that map locations tend to lie on the edges or
down the central crease is based in fact.

◆MURPHY’S LAW◆

ONE of the banes of everyday life is having to deal
with the consequences of Murphy’s Law: “If some-
thing can go wrong, it will”. First coined almost 50
years ago by an eponymous US Air Force Captain
working on rocket sled experiments, Murphy’s Law
is popularly blamed for everything from toast land-
ing butter-side down to the impossibility of finding
matching pairs of socks in the morning.
Despite the wealth of anecdotal evidence for the va-
lidity of Murphy’s Law, however, most scientists still
regard it as no more than a silly urban myth. Indeed,
a programme in the BBC-TV popular science series
Q.E.D. in 1993 is often cited as having debunked the
concept of Murphy’s Law. For example, in tests in-
volving tossing bread into the air hundreds of times,
it emerged that the buttered side landed face-down
just as often as face-up. These tests were, however,
fundamentally misconceived: people do not usually
toss bread or toast into the air before eating it. A more
plausible route for toast to end up on the floor is via
sliding off a plate or being nudged off a table -proc-
esses dynamically completely different from a coin-
toss. It turns out that under these more plausible con-
ditions, the resulting rigid-body dynamics do lead
toast to have a bias towards butter-down landings
(Matthews 1995). I have since found that many other
notorious manifestations of Murphy’s Law are
equally well-founded, with explanations ranging
from combinatorics for the plethora of odd socks to
knot theory in the case of tangled rope (Matthews
1995, 1996a,b,c, 1997).
In what follows, I investigate a phenomenon very
familiar to those who make heavy use of maps and
road atlases: the apparent predilection of places we
are looking for to lie in awkward parts of the map,
such as along the edge or down the central crease. I
show that this Murphy’s Law of Maps - “If a location
can lie in an awkward part of the map, it will” - is no
mere urban myth, but can be explained using geom-
etry and probability theory.
Let us take our map to be rectangular, of sides length
m  and n, (m > n; see Figure 1). We can then define a

“Murphy Zone” around the edge of the map, and to ei-
ther side of the central crease, of width b (<n/2, to pre-
vent the Murphy Zone overlapping itself).

Simple geometry then shows that the total area of the
map that falls into this Murphy Zone is A, where
A=2b(2n+m - 4b). (1)
As the total area of the map is simply m x n, the prob-
ability that a point picked at random will be in the
Murphy Zone is P, where

P=A/mn=2b(2/m+1/n - 4b/mn). (2)
For simplicity, let us now take the case of a square map,
for which m = n. Then (2) becomes
P = 6(b/m) -8(b/m)2 (3)
 The Murphy Zone shown on Figure 1 takes up just one-
tenth of the total page width; henceforth, we will take
this as the definition of the Murphy Zone. Now comes
the surprise. What is the probability of a destination
picked at random lying within this area? Setting b/m =
0.1 in (3) we find that

P = 0.52. (4)
In other words, a point picked at random has better than
50:50 odds of ending up in a Murphy Zone of width just
one-tenth that of the whole map. At first sight, this seems
very surprising; mathematically, the explanation is sim-
ply that the Zone tracks the outermost - and thus largest -

dimensions of the map, so only a relatively narrow width



still encloses a comparatively large total area.
Those who still doubt the result should carry out the
ultimate test of any explanation, and perform an ex-
periment: use a random number generator to pick,
say, 100 random locations from the index at the back
of most atlases, and count the proportion that fall
into the Murphy Zone leading to (4).
Having established the root cause of Murphy’s Law
of Maps, we can ask a number of related questions,
such as the probability of both our starting point and
our destination lying in a Murphy Zone. Again, this
is surprisingly high: for the size of Murphy Zone
given above, and assuming both locations are ran-
domly distributed, the probability is 0.52 x 0.52 =
0.27 - in other words, over one in four of all our trips
will both begin and end in a Murphy Zone.
These results are, of course, based on two assump-
tions: firstly, that map locations are randomly dis-
tributed within the map area, and secondly that the
map is square. It is hard to see why an individual
location on a map should not be randomly distrib-
uted; map page areas are typically defined with ref-
erence to the Ordnance Survey Grid, and these bear
no obvious relation to human habitation patterns.
While some maps may try to centre on a major con-
urbation such as Birmingham, the haphazard distri-
bution of others will still tend to randomise their lo-
cations. That said, if the map is so large-scale that
our journeys from place to place span very little dis-
tance, then our assumption that both starting point
and destination are independent random variables is
decidedly shaky. Thus one should not put too much
faith in the 27 per cent figure given above.
The assumption that the map is square is much more
important, as most road atlas pages are not square,
but typically have an “aspect ratio” K = m / n of
around 1.4. As we shall now show, K holds the key
to combating Murphy’s Law of Maps.

◆COMBATING MURPHY’S LAW◆

OF MAPS

In considering maps with aspect ratios K > 1, we
must be slightly more careful in our definition of the
width of the Murphy Zone relative to m and n, the
leading dimensions of the map. There are two ad-
vantages in defining it relative to n, the shorter of
the two dimensions. Firstly, it is then easier to en-
sure we do not breach the condition b < n/2 needed
to avoid any Murphy Zones overlapping each other.
Second, it prevents a Murphy Zone that is relatively
thin compared to the edges of length m producing a
ludicrously thick one relative to the edges of length
n. So, defining r = b/n, equation (2) becomes

P = [(4/K) +2]r - (8/K)r2 (5)
Setting r =  1/10 and K = m/n = 1.4, we find P = 0.43,
compared to P = 0.52 for a square map. Thus, increasing
the aspect ratio K reduces the chances of our landing in
the Murphy Zone (essentially because the proportion of
it running parallel to the longest sides, m, tends to zero).
This feature of map design does not appear to have been
widely recognised by map-makers. The Reader’s Digest
Atlas of the British Isles (Reader’s Digest Association
Ltd., 1988) has a relatively large aspect ratio, because of
its “exclusive” fold-out flaps which increase the aspect
ratio from around K = 1.37 (P = 0.43) to K = 1.54, re-
ducing the chances of landing in the Murphy Zone to
0.41. However, these flaps were apparently introduced
merely to allow roads to be followed easily from one
page to another - and they only work on one side of the
map; if they worked on both, they would reduce P to
just 0.38.

While changing the aspect ratio of maps would help
ameliorate the worst effects of Murphy’s Law of Maps,
it is impossible to evade its effects completely: from (5)
we see that even as K tends to infinity, P approaches the
asymptotic value of 2r - which is small (0.20 for r = 1/
10), but still non-zero!

◆CONCLUSION◆

Scientists are often quick to dismiss popular beliefs
like Murphy’s Law as nothing more than “urban myths”.
However it is often worth pausing to wonder precisely
why so many people believe in a particular phenomenon.
Are they really all dunderheads who just forget all the
times the phenomenon does not occur? Or might there
be some deeper explanation, based on counter-intuitive
probabilistic arguments? In the case of Murphy’s Law
of Maps, there is a particularly simple explanation for
why people think map locations tend to lie in awkward
places. They do.
More Murphy-related information can be found at:
http://ourworld.compuserve.com/homepages/rajm/
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